This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



### Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

# Excess Molar Enthalpies for the Propan-2-OL Methylacetate

## Dichloromethane System at 298.15 K

InÉS L. Acevedoª; Graciela C. Pedrosaª; Miguel Katzª ª Cátedra de Fisicoquímica, Instituto de Ingeniería Quimica, Facultad de Ciencias Exactas y Tecnologia, Tucumán, R. Argentina

**To cite this Article** Acevedo, InÉS L., Pedrosa, Graciela C. and Katz, Miguel(1996) 'Excess Molar Enthalpies for the Propan-2-OL Methylacetate Dichloromethane System at 298.15 K', Physics and Chemistry of Liquids, 32: 1, 29 – 36 **To link to this Article: DOI:** 10.1080/00319109608030703

URL: http://dx.doi.org/10.1080/00319109608030703

# PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

*Phys. Chem. Liq.*, 1996, Vol. 32, pp. 29–36 Reprints available directly from the publisher Photocopying permitted by license only ① 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

### EXCESS MOLAR ENTHALPIES FOR THE PROPAN-2-OL + METHYLACETATE + DICHLOROMETHANE SYSTEM AT 298.15 K

#### INES L. ACEVEDO, GRACIELA C. PEDROSA and MIGUEL KATZ<sup>1</sup>

Cátedra de Fisicoquímica, Instituto de Ingeniería Quimica, Facultad de Ciencias Exactas y Tecnologia, U.N.T., Avda. Independencia 1800, S. M. de Tucumán (4000), R. Argentina

(Received 2 November 1995)

Heat of mixing data for the ternary liquid system propan-2-ol + methylacetate + dichloromethane at 298.15 K are reported along with data for the constituent binary systems. Different expressions published in the literature were used to calculate excess enthalpies from the corresponding binary data. The empirical correlation of Tanaka and Tamura gives the best prediction for this system. The UNIFAC group contribution is applied to predict enthalpies, in this case only for binary systems and compared with experimental data.

KEY WORDS: Enthalpies, binary and ternary systems, prediction by UNIFAC group contribution.

#### **1 INTRODUCTION**

Data of excess molar enthalpies of mixtures of ternary system are rare in the literature. It is therefore interesting to estimate excess molar enthalpies of mixtures from binary data and compared with experimental values. In previous papers, we have published densities, viscosities, enthalpies and excess Gibbs energies for the 2-propanol (2-PR) + methylacetate  $(MA)^1$  system; densities, viscosities, enthalpies and excess molar Gibbs free energies for the 2-propanol (2-PR) + dichloromethane  $(DCM)^2$  and the same parameters for the MA + DCM<sup>3</sup> system at 298.15 K.

For the ternary 2-PR (1) + MA(2) + DCM(3) system it has been published excess molar volumes, viscosities<sup>4</sup> and vapor-liquid equilibrium<sup>5</sup>. Now, in this paper, we determined the excess molar enthalpies  $H_{123}^E$  for the ternary system in order to consider some methods for empirical correlations, assuming that interactions in a ternary mixture, are closely dependent on the interaction of the constituent in binary mixtures.

The group contribution method are widely used in fluid phase equilibrium calculations. In this work, the UNIFAC contribution method will be applied to predict only binary excess enthalpies because for the ternary systems, interaction parameters are not available.

<sup>&</sup>lt;sup>1</sup>To whom correspondence should be addressed.

#### 2 EXPERIMENTAL SECTION

The methods used in our laboratory have been described previously<sup>6</sup>. Densities were measured with a digital densimeter AP, model DMA 45. All weighings were made on a H315 Mettler balance. The adiabatic calorimeter described by Loiseleur *et al.*<sup>7</sup> was used with some modifications to determine the enthalpy changes. The appreciation in densities was  $\pm 0.1$  kg m<sup>-3</sup> and for enthalpies the error is  $\pm 5$  J mol<sup>-1</sup>.

The substances were purified as described in the references. Caution was taken to prevent evaporation. Each experimental run was performed by adding the third component to a binary mixture of the other two. A ternary system was regarded as a pseudo-binary system made up of one binary mixture and the third component. One mole of the ternary mixture was prepared by mixing  $(1 - x_3)$  of the initial binary mixture and  $x_3$  of the component 3. The ternary  $H_{123}^E$  is given by:

$$\Delta H_{123}^E = \Delta H_m + (1 - x_3) H_{12}^E \tag{1}$$

where  $\Delta H_m$  is the observed molar excess enthalpy for the pseudobinary mixture and  $H_{12}^E$  is the excess molar enthalpy of the 2-PR(1) + MA(2) system. The same procedure was followed with 2-PR(1) + DCM(3) and MA(2) + DCM(3).

#### 3 RESULTS AND DISCUSSION

The values of  $H_{ij}^E$  for binary systems, can be calculated from the experimental data (the mole fraction being known) by using a Redlich-Kister polynomial expression:

$$H_{ij}^{E} = x_{i} x_{j} \sum_{k=0}^{n} a_{k} (x_{i} - x_{j})^{k}$$
<sup>(2)</sup>

where  $a_k$  are polynomial coefficients. The method of least squares was used to determine the values of the coefficients. In each case, the optimum number of coefficients was ascertained from an estimation of the variation of the standard error estimate with n:

$$\sigma = \left[\sum \frac{(H_{ij\,(\text{obs})}^E - H_{ij\,(\text{cal})}^E)^2}{(n_{\text{obs}} - n)}\right]^{1/2}$$
(3)

The values adopted for the coefficients and standard error of the estimate associated with the use of Eqn. (3) are summarized in Table 1.

Figure 1 shows values of  $H_{ij}^E$  for the three binary systems. The continuous curves were calculated from Eqn. (2) using the coefficients of Table 1. Table 2 shows the experimental values of  $H_{123}^E$  for the 2-PR(1) + MA(2) + DCM(3) system at 298.15 K. Figure 2 shows curves of constant excess molar enthalpies for the ternary system.

**Table 1** Coefficients  $a_k$  from Eqn. (2) and standard deviations  $\sigma$  for the binary system at 298.15 K.

| System             | $a_0$  | <i>a</i> <sub>1</sub> | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | <i>a</i> <sub>4</sub> | <i>a</i> <sub>5</sub> | σ  |
|--------------------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----|
| 2-PR(1) + MA(2)    | 6456   | - 240                 | 3040                  | - 30                  | -4480                 | - 1000                | 5  |
| 2 - PR(1) + DCM(3) | 4900   | 3000                  | 3600                  | -3000                 |                       | -                     | 47 |
| MA(2) + DCM(3)     | - 3398 | 320                   | -890                  | -2100                 | 1800                  | 2400                  | 11 |



**Figure 1** Excess molar enthalpies at 298.15 K. Curves A and A' propan-2-ol(1) + methylacetate(2); curve B, propan-2-ol(1) + dichloromethane(3); curves C and C'; methylacetate(2) + dichloromethane(3); \_\_\_\_\_\_\_ experimental data; ------ calculated by the UNIFAC method.

Development of reliable methods for representing the behavior of a ternary system depend on the availability of appropriate experimental data. In this work we considered to be possible to evaluate  $H_{123}^E$  of non-electrolytes when the corresponding enthalpies of the binary systems are known. This approach has led to the development of several empirical relations to calculate  $H_{123}^E$ .

Tsao and Smith<sup>8</sup> proposed an equation who has the following expressions:

$$H_{123}^{E} = \left(\frac{x_{2}}{1-x_{1}}\right) H_{12}^{E} + \left(\frac{x_{3}}{1-x_{1}}\right) H_{13}^{E} + (1-x_{1}) H_{23}^{E}$$
(4)

in which  $H_{ij}^E$  refers to the excess enthalpy for the binary mixtures at compositions  $x_i^0$  and  $x_j^0$  such that  $x_i^0 = x_i$  for the 1–2 and 2–3 systems and  $x_2^0 = x_2/(x_2 + x_3)$  for the 2–3 binary system.

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta H_m(J mol^{-1})$         | $H_{123}^{E}(J \ mol^{-1})$ |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------|
| $x'_{1}/x$            | $\alpha'_2 = 0.9985;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $x'_1 = 0.4996; \ H^E_{12} = 1$  | 614 (J mol <sup>-1</sup> )  |
| 0.4449                | 0.4456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 990                              | 1167                        |
| 0.3841                | 0.3847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 543                              | 916                         |
| 0.3248                | 0.3254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 287                              | 852                         |
| 0.2494                | 0.2497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -28                              | 781                         |
| 0.1843                | 0.1846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -379                             | 640                         |
| 0.1148                | 0.1149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 788                              | 455                         |
| 0.0493                | 0.0494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1203                            | 252                         |
| $x'_2/x$              | $x_3 = 0.2738; x_3 = 0.2738; $ | $f_2 = 0.2150; \ H_{23}^E = -$   | 580 (J mol <sup>-1</sup> )  |
| 0.0966                | 0.1943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 747                              | 223                         |
| 0.1720                | 0.1779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1102                             | 622                         |
| 0.2979                | 0.1509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1363                             | 956                         |
| 0.4595                | 0.1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1276                             | 962                         |
| 0.6398                | 0.0774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1022                             | 813                         |
| 0.7752                | 0.0483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 678                              | 548                         |
| 0.9005                | 0.0214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 312                              | 25                          |
| $x'_2/x'$             | $x'_3 = 1.0263; x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $E_2' = 0.5243; \ H_{23}^E = -$  | 848 (J mol <sup>-1</sup> )  |
| 0.1690                | 0.4209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1125                             | 420                         |
| 0.3150                | 0.3469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1001                             | 850                         |
| 0.4671                | 0.2699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1410                             | 958                         |
| 0.5698                | 0.2179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1228                             | 863                         |
| 0.6026                | 0.2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1177                             | 840                         |
| 0.8089                | 0.0968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 623                              | 461                         |
| 0.8685                | 0.0668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 422                              | 310                         |
| $x'_2/x'$             | $y_3 = 2.9897; x_3 = 2.9897; x_4 = 2.9897; x_5 = 2.9897; x_6 = 2.9897; x_6 = 2.9897; x_7 = 2.9897; x_8 = 2.989; x_8 = 2.989; x_8 = 2.989; x_8 = 2.980; x_$ | $t'_2 = 0.7494; H_{23} = -$      | 664 (J mol <sup>-1</sup> )  |
| 0.1210                | 0.6587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 890                              | 306                         |
| 0.2617                | 0.5533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1330                             | 840                         |
| 0.4503                | 0.4119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1385                             | 1020                        |
| 0.5623                | 0.3280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1299                             | 1008                        |
| 0.7004                | 0.2245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 967                              | 768                         |
| 0.7993                | 0.1504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 718                              | 585                         |
| 0.8927                | 0.0804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 392                              | 321                         |
| $x'_1/x$              | $x'_3 = 0.5363; z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $x'_1 = 0.3491; \ H^E_{13} = 16$ | 415 (J mol <sup>-1</sup> )  |
| 0.3146                | 0.0984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -184                             | 1092                        |
| 0.2953                | 0.1543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -216                             | 981                         |
| 0.2448                | 0.2988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -262                             | 730                         |
| 0.1848                | 0.4706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 196                            | 553                         |
| 0.1193                | 0.6581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -208                             | 325                         |
| 0.1106                | 0.5831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -311                             | 279                         |
| 0.0647                | 0.8148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -66                              | 196                         |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                             |

Table 2Experimental excess molar enthalpies for the propan-2-ol(1) + methylacetate(2) + dichoromethane (3) system at298.15 K.

This equation is assymetrical and needs some specification to identify component 1. Kohler<sup>9</sup> proposed an equation for a ternary system of the following form:

$$H_{123}^{E} = (x_1 + x_2)^2 H_{12}^{E} + (x_1 + x_3)^2 H_{13}^{E} + (x_2 + x_3)^2 H_{23}^{E}$$
(5)

which is symmetrical in that all three binary systems are treated identically. In this



Figure 2 Lines of constant excess molar enthalpies for the propan-2-ol(1) + methylacetate(2) + dichloromethane(3) system at 298.15 K.

equation  $H_{ij}^E$  refers to the excess molar enthalpies of  $x_i^0$ ,  $x_j^0$  where  $x_i^0 = 1 - x_j^0 = x_i/(x_i + x_j)$ .

Radojkovic et al.<sup>10</sup> considered an expression of the form:

$$H_{123}^{E} = H_{12*}^{E} + H_{13*}^{E} + H_{23*}^{E}$$
(6)

where  $H_{12^*}^E$ ,  $H_{13^*}^E$  and  $H_{23^*}^E$  represents the excess enthalpies with  $x_1$ , and  $x_2$  and  $x_3$  mole fractions of the ternary systems calculated from Eqn. [2] using the coefficients of Table 1.

Cibulka<sup>11</sup> proposed the equation:

$$H_{123}^{E} = H_{12*}^{E} + H_{13*}^{E} + H_{23*}^{E} + x_1 x_2 x_3 (A + B x_1 + C x_2)$$
(7)

where A, B and C are parameters characteristic of the mixtures evaluated by fitting this equation by the least squares method with a standard deviation defined as in Eqn. (3). The parameters obtained are A = 10662, B = -44018 and C = 4745.

Singh *et al.*<sup>12</sup> proposed an equation of the following form

$$H_{123}^{E} = H_{12*}^{E} + H_{13*}^{E} + H_{23*}^{E} + x_1 x_2 x_3 [A + B x_1 (x_2 - x_3) + C x_1^2 (x_2 - x_3)]$$
(8)

The parameters obtained are A = -807, B = -22957 and C = -323282. These two equations are modifications of the equation of Radojkovic *et al.*<sup>10</sup> like Nagata

and Tamura equation<sup>13</sup>:

$$H_{123}^{E} = H_{12*}^{E} + H_{13*}^{E} + H_{23*}^{E} + x_1 x_2 x_3 \Delta_{123}$$
(9)

where

$$\frac{\Delta_{123}}{RT} = \sum_{j=1}^{\sigma} b_j (1 - 2x_j)^{j-1}$$
(10)

Equation (9) was used by Van Ness and his coworkers<sup>14,15</sup> in correlating their excess molar enthalpy results. The coefficients of Eqn. (10) together with the standard deviations are:

$$b_1 = -0.021226;$$
  $b_2 = -10.3954;$   $b_3 = 0.620608;$   $b_4 = 81.2468;$   
 $b_5 = -44.4992;$   $b_6 = -78.2714$  and  $\sigma = 142.$ 

Table 3 shows the standard deviation calculated by using all the above mentioned equations for  $H_{123}^E$ . This standard deviation SD is defined as:

$$SD = \left(\sum \frac{(H_{exp}^E - H_{eal}^E)^2}{n}\right)^{1/2}$$
(11)

Eqn. (9) shows the best agreement with the experimental data.

The enthalpy of mixing can be calculated from the excess Gibbs free energy  $G^{E}$ , by:

$$\frac{\partial}{\partial T} \left( \frac{G_{ij}^E}{T} \right) = -\frac{H_{ij}^E}{T^2}$$
(12)

Equation (12) in conjunction with the UNIFAC model<sup>14</sup> yields the following expression for the enthalpy of mixing:

$$H_{ij}^{E} = \sum x_i \Delta \bar{H}_i \tag{13}$$

Table 3Standard deviations for the propan-2 - ol(1) + methylacetate(2) + dichloromethane (3) system at 298.15 K.

| Equation | $SD(H_{123}^{E}) (J \ mol^{-1})$ | Equation | $SD(H^{E}_{123})(J mol^{-1})$ |  |
|----------|----------------------------------|----------|-------------------------------|--|
| (4)      | 125                              | (7)      | 90                            |  |
| (5)      | 173                              | (8)      | 164                           |  |
| (6)      | 181                              | (9)      | 5                             |  |
|          |                                  |          |                               |  |

where

$$\Delta \bar{H}_{i} = \sum v_{k}^{(i)} (H_{k} - H_{k}^{(i)}) \tag{14}$$

Here,  $v_k^{(i)}$  is the number of groups of type k in component i;  $H_k$  is the excess enthalpy of group k and  $H_k^{(i)}$  is the same as  $H_k$  but in a reference solution containing only molecules of type i. The derivatives of  $\Gamma_k$  respect to temperature is:

$$\frac{H_k}{RT^2} = Q_k \left[ \frac{\sum_m \vartheta_m \psi'_{mk}}{\sum^m \vartheta_m \psi_{mk}} + \sum_m \left( \frac{\vartheta_m \psi'_{km}}{\sum_n \vartheta_n \psi_{nm}} - \frac{\vartheta_m \psi_{km} \sum_n \vartheta_n \psi'_{nm}}{(\sum_n \vartheta_n \psi_{nm})^2} \right) \right]$$
(15)

where  $\theta_m$  is the area fraction of group *m* in the mixutres:

$$\theta_m = \frac{Q_m X_m}{\sum_n Q_n X_n} \tag{16}$$

 $Q_m$  is the area parameter of group *m*, and  $X_m$  is the mole fraction of group *m* in the mixture, which can be calculated with the following expression:

$$X_{m} = \frac{\sum_{i} x_{i} v_{mi}}{\sum_{k} x_{i} \sum_{k} v_{ki}}$$
(17)

and  $\psi_{mn}$  is:

$$\psi_{mn} = \exp(Za_{mn}/2T) \tag{18}$$

$$\psi'_{mn} = \frac{\partial}{\partial T} (\psi_{mn}) \tag{19}$$

and

$$Z = Z(T) = 35.2 - 0.12772T + 0.00014T^2$$
<sup>(20)</sup>

where Z is the temperature-dependent coordination number and  $a_{mn}$ , the temperature-independent interaction parameters between groups m and n.

The parameters used<sup>16</sup> are summarized in Table 4. The values for  $H_{12}^E$  and  $H_{23}^E$  are shown in Figure 1 with an average absolute error defined as:

$$AAE = \frac{1}{n} \sum \left| \frac{(H_{exp}^E - H_{cal}^E)}{H_{exp}^E} \right| \times 100$$
(21)

with 12% for 2-PR(1) + MA(2) system and 16% for MA(2) + DCM(3) system. The interaction parameters between OH and  $CH_2Cl_2$  are not available. Using parameters from Larsen *et al.*<sup>17</sup>, the values obtained for our systems including ternary systems presents great errors.

| <i>m\n</i>      | $Q_k$ | CH <sub>3</sub> | CH <sub>2</sub> | ОН     | <i>C00C</i> | $CH_2CI_2$ |
|-----------------|-------|-----------------|-----------------|--------|-------------|------------|
| CH <sub>3</sub> | 0.848 | 0.0             | 0.0             | 545.77 | 44.98       | 26.60      |
| CH,             | 0.540 | 0.0             | 0.0             | 545.77 | 44.98       | 26.60      |
| ОН́             | 1.200 | 99.57           | 99.57           | 0.0    | 249.07      | na         |
| COOC            | 1.728 | 114.1           | 114.1           | 291.46 | 0.0         | 1315.1     |
| $CH_2Cl_2$      | 1.988 | -0.39           | -0.39           | na     | - 5.53      | 0.0        |

**Table 4** Group interaction parameters and  $Q_k$  values.

#### Acknowledgement

The present work was financed by a CIUNT research grant.

#### References

- 1. G. C. Pedrosa, J. A. Salas, F. Davolio and M. Katz, Actas 1 Simposio Latinoamericano sobre Propiedades de los Fluidos y Diseho de Procesos Quimicos. Concepcion, Chile (1987).
- 2. J. L. Zurita, M. L. G. de Soria, M. A. Postigo and M. Katz, J. Sol. Chem., 16, 163 (1987).
- 3. J. A. Salas, G. C. Pedrosa, F. Davolio and M. Katz, Anal. Asoc. Quim. Arg., 75, 191 (1987).
- 4. I. L. Acevedo, M. A. Postigo and M. Katz, Can. J. Chem., 66, 367 (1988).
- 5. I. L. Acevedo, G. C. Pedrosa, E. L. Arancibia and M. Katz, J. Chem. Eng. Data., 36, 137 (1991).
- 6. M. E. de Ruiz Holgado, C. R. de Schaefer, F. Davolio and M. Katz, *Thermochim. Acta*, 196, 169 (1992).
- 7. A. Loiseleur, J. C. Merlin and R. A. Paris, J. Chim. Phys., 62, 1380 (1965).
- 8. C. C. Tsao and J. M. Smith, Chem. Eng. Prog. Symp. Ser., 49, 107 (1953).
- 9. F. Kohler, Monatsh. Chem., 91, 738 (1960).
- N. Radojkovič, A. Tasič, D. Grozdanič, B. Djordjevič and M. Malič, J. Chem. Thermodyn. 9, 349 (1977).
- 11. I. Cibulka, Coll. Czech. Chem. Commun., 47, 1414 (1982).
- 12. P. P. Singh, R. K. Nigam, S. P. Sharma and S. Aggarwal, Fluid Phase Equil., 18, 283 (1988).
- 13. I. Nagata and K. Tamura, J. Chem. Eng. Data., 33, 283 (1988).
- 14. J. W. Morris, P. J. Mulvey, M. M. Abbott and H. C. Van Ness, J. Chem. Eng. Data, 20, 403 (1975).
- 15. J. P. Shatas Jr., M. M. Abbott and H. C. Van Ness, J. Chem. Eng. Data, 20, 406 (1975).
- 16. P. Dang and D. P. Tassios, Ind. Eng. Chem. Process Des. Dev., 25, 22 (1986).
- 17. B. L. Larsen, P. Rasmussen and A. Fredenslund, Ind. Eng. Chem. Res., 26, 2274 (1987).